Package: questionnaires (via r-universe)

November 3, 2024

Title Package with functions to calculate components and sums for LCBC
questionnaires

Version 0.0.3

Description Creates summaries and factorials of answers to
questionnaires.

License MIT + file LICENSE
Encoding UTF-8
Imports dplyr (>= 1.0.0), tidyr, lubridate, Ifactors, cli

Suggests testthat (>= 2.1.0), here, devtools, knitr, rmarkdown, covr,
katex

RoxygenNote 7.2.3
Roxygen list(markdown = TRUE)
VignetteBuilder knitr

URL https://github.com/LCBC-UiO/questionnaires

BugReports https://github.com/LCBC-Ui0/questionnaires/issues
Repository https://Icbc-uio.r-universe.dev

RemoteUrl https://github.com/LCBC-UiO/questionnaires

RemoteRef HEAD

RemoteSha 2e70ecae9d4bc3a9¢702686fa810c66267c5¢cd0c

Contents
bdi_compute e e e e 2
bdi_restructure e e e e 5
) 6
bfi_domain e 8
bfi_facet 10
bfi_reversal 13
edu_compile 14
edu_compute 15

https://github.com/LCBC-UiO/questionnaires
https://github.com/LCBC-UiO/questionnaires/issues

Index

bdi_compute

edu_factoriSE e 16
edu_levels e e e e e 17
edu_levels2name e 18
edu_map e e e e 19
edu_recode 20
edu_reduce e 20
@dU_TO_Y@AIS . . . v v e e e e e e e e e e e e e e e e e 21
ehi_change e e 22
ehi_compute L e e e e e 23
ehi_compute_1q oL e 25
ehi_factorise_Iq 28
ehi_factorise_nominal 31
ehi_values e 31
gds_alter_values. e e e 32
gds_binary e e e 32
gds_compute_SUMt e e e e e e e e e e 33
gds_values e e 35
income_bin2noK e 36
income_nok2other e 37
ipag_compute_met e e e e 37
IPAG_MELS . . . o o e e e e e e e e e e e e e e e e e 40
ipag_time_alter e e e 41
Is_hm ... e e e 41
1Is_hms . . . e e 42
PSQI_COMPULE_COMP2 .« . . v v v v e b e e e e e e e e e e e e 43
psqi_compute_time_in_bed 45
tAS_COMPULE o v v e e i e e e e e e e e e e e e e 46
time_alter e 47
time_deci2period e e 47
time_factor e e 48
time_hms2deci 48
time_of day 49
zygo_cale . ..o 49
ZYZO_COMPULE .« . v v v v v e 51
ZYZO_TECOAE e e e e e e e e 53
ZYZO_LYPE « v v o e e e e e e e e e e e e e e e e e e 54
zygo_weightedo 55
56

bdi_compute Calculate BDI scores

bdi_compute 3

Description

Beck Depression Inventory-II (BDI-II) is one of the most widely used instruments for measuring the
severity of self-reported depression in adolescents and adults. As a general rule, BDI-II is admin-
istrated in LCBC to adults with an upper cut off around 60 years, while depression in older adults
is assessed with the Geriatric Depression Scale (GDS). However, please consult the instructions for
each project, as this guideline has been implemented at different time points across the projects.

The questionnaire consists of 21 statements, each reflecting a depression symptom or attitude which
could be rated from O to 3 in terms of intensity. The answers should be based the participant s
feelings throughout the last week, including the day of filling out the form. The sum of the scores
of the items (0-3) yields one total score, with a possible range between 0 and 62.

Interpretation of the scores (Total scores):

Score Category
0-10 These ups and downs are considered to be normal
11-16 Mild mood disturbance
17-20 Borderline clinical disturbance
21-30 Moderate depression
31-40 Severe depression

Above 40 Extreme depression

If a participant scores >= 17, we should consider contacting the participant to follow up on this
and offer making a note for the participant’s doctor describing the scores.

Data requirements:

Column names:

By default, the functions assume that columns have names in the manner of bdi_XX where XX is
a zero-padded (i.e. zero in front of numbers below 9, eg. @9) question number of the inventory.
You may have column names in another format, but in that case you will need to supply to the
functions the names of those columns using tidy-selectors (see the tidyverse packages for this).
The columns should adhere to some naming logic that is easy to specify.

Data values:

The values in the columns should be the item number of the question that was answered (i.e. 9,
1, 2, or 3). The inventory allows subjects to respond to several options per question, in the case
of this, the mean of the responded alternatives should be applied.

References:

Aaron T.Beck, Robert A.Steer, Margery G.Carbin (1988) Psychometric properties of the Beck
Depression Inventory: Twenty-five years of evaluation, Clinical Psychology Review, Volume 8§,
Issue 1, Pages 77-100, doi: 10.1016/0272-7358(88)90050-5

Robert A.Steer, David J.Rissmiller, Aaron T.Beck (2000) Use of the Beck Depression Inventory-
II with depressed geriatric inpatients Behaviour Research and Therapy Volume 38, Issue 3,Pages
311-318, doi: https://doi.org/10.1016/S0005-7967(99)00068-6

Groth-Marnat G. (1990). The handbook of psychological assessment (2nd ed.). New York: John
Wiley & Sons.

https://www.tidyverse.org/
https://doi.org/10.1016/0272-7358(88)90050-5
https://doi.org/10.1016/S0005-7967(99)00068-6
https://books.google.no/books?id=ldF5oRto-HAC&lpg=PR13&ots=Id0OKllubF&dq=Groth-Marnat%20G.%20(1990).%20The%20handbook%20of%20psychological%20assessment%20(2nd%20ed.).%20New%20York%3A%20John%20Wiley%20%26%20Sons.&lr&hl=no&pg=PR13#v=onepage&q&f=false

4 bdi_compute

Usage

bdi_compute(
data,
cols = matches("bdi_[0-9]1[0-91%$"),
max_missing = 0,

prefix = "bdi_",
keep_all = TRUE

bdi_compute_sum(data, cols = matches("bdi_[0-91[0-9]%"), max_missing = 0)

bdi_factorise(bdi_sum)

Arguments
data Data containing BDI data
cols Columns that contain BDI data
max_missing Maximum number of components allowed to be missing. Defaults to "0", and
will return NA if missing any question. If set to NULL any missing component
counts as 0, meaning if all BDI components are missing, the sum is still 0, not
NA.
prefix string to prefix column names of computed values
keep_all logical, append to data.frame
bdi_sum Sum of BDI questions, as summed by bdi_compute_sum
Value
data.frame
Functions

* bdi_compute_sum(): Compute the BDI sum based on a data.frame containing the BDI data.
Returns a numeric vector.

* bdi_factorise(): Create a factor based on the BDI sum, with the cut-off points as described
in original paper.

Examples

Example of treatment of missing values
library(dplyr)

library(questionnaires)

data <- tibble(

bdi_@1 = c(1, NA_real_, NA_real_, 2, 1),
bdi_02 = c(1, 1, NA_real_, 2, NA_real.)
)

Row with all components missing, gets sum @
bind_cols(data,

bdi_restructure 5

bdi_sum = bdi_compute_sum(data))

Do not allow any missing values
bind_cols(data,
bdi_sum = bdi_compute_sum(data, max_missing = 0))

Allow one missing value
bind_cols(data,
bdi_sum = bdi_compute_sum(data, max_missing = 2))

bdi_restructure Restructure BDI questions from wide format

Description

If data come from Nettskjema, the structure is in wide format, with each question option as columns,
creating 21*4 columns of data. This function allows you to gather and create single columns for

questions.
Usage

bdi_restructure(data, cols = matches("[0-9]_[0-9]1"), sep = "_")
Arguments

data Data containing BDI data

cols Columns that contain BDI data

sep separator to use for the column names
Details

The columns must adhere to some specific logic to work. It is recommended that the column
names are in the format bdi_01_0 bdi_01_1 bdi_01_2 bdi_01_3, where the first two numbers are
the question number, and the last number is the option number.

Value

data frame

Examples

dat <- data.frame(
ID = 1:4,
bdi_01_0 = c(NA,1, NA, NA),
bdi_01_1 = c(1, NA, 1, NA),
bdi_01_2 = c(NA, NA, 1, NA),
bdi_01_3 = c(NA, NA, NA, NA),
bdi_02_0 = c(1, NA, NA, NA),

bdi_02_1 = c(NA,NA, NA, NA),
bdi_02_2 = c(NA,1, NA, NA),
bdi_02_3 = c(NA, NA, NA, 1)

)

bdi_restructure(dat)

bfi Big 5 Inventory

Description

The BFI-2 is a measure of the Big Five personality domains (which we label Extraversion, Agree-
ableness, Conscientiousness, Negative Emotionality, and Open-Mindedness) and 15 more-specific
facet traits. The Big Five personality traits was the model to comprehend the relationship between
personality and academic behaviors. This model was defined by several independent sets of re-
searchers who used factor analysis of verbal descriptors of human behavior. These researchers
began by studying relationships between a large number of verbal descriptors related to personality
traits. They reduced the lists of these descriptors by 5-10 fold and then used factor analysis to group
the remaining traits (using data mostly based upon people’s estimations, in self-report questionnaire
and peer ratings) in order to find the underlying factors of personality

Item numbers for the BFI-2 domain and facet scales are listed below. Reverse-keyed items are
denoted by “R.” For more information about the BFI-2, visit the Colby Personality Lab website
(http://www.colby.edu/psych/personality-lab/).

Domain Scales:

Extraversion: 1, 6, 11R, 16R, 21, 26R, 31R, 36R, 41, 46, 51R, 56 Agreeableness: 2, 7, 12R,
17R, 22R, 27, 32, 37R, 42R, 47R, 52, 57 Conscientiousness: 3R, 8R, 13, 18, 23R, 28R, 33, 38,
43, 48R, 53, 58R Negative Emotionality: 4R, 9R, 14, 19, 24R, 29R, 34, 39, 44R, 49R, 54, 59
Open-Mindedness: 5R, 10, 15, 20, 25R, 30R, 35, 40, 45R, 50R, 55R, 60

Facet Scales:

Sociability: 1, 16R, 31R, 46 Assertiveness: 6, 21, 36R, 51R Energy Level: 11R, 26R, 41,
56 Compassion: 2, 17R, 32, 47R Respectfulness: 7, 22R, 37R, 52 Trust: 12R, 27, 42R, 57
Organization: 3R, 18, 33, 48R Productiveness: 8R, 23R, 38, 53 Responsibility: 13, 28R, 43,
58R Anxiety: 4R, 19, 34, 49R Depression: 9R, 24R, 39, 54 Emotional Volatility: 14, 29R, 44R,
59 Intellectual Curiosity: 10, 25R, 40, 55R Aesthetic Sensitivity: SR, 20, 35, 50R Creative
Imagination: 15, 30R, 45R, 60

Relational table:
Domain Factor-pure facet Complementary facets
E Sociability Assertiveness, Energy Level
A Compassion Respectfulness, Trust
C Organization Productiveness, Responsibility
N Anxiety Depression, Emotional Volatility
(0] Aesthetic Sensitivity Intellectual Curiosity, Creative Imagination

bfi 7
Data requirements:
Column names:
The package functions expect the data to be named in a specific way, and to not contain data
other than the BFI-2 data. Column names should be zero-leading two digits to indicate the
question number, and they should end with these two digits. If this system is followed, then all
functions work out of the box.
Examples that work:
* bfi_01 bfi_02 ... bfi_59 bfi_60
e big_five_01big_five_02 ... big_five_59 bbig_five_60
Examples that won’t work
e bfi_1bfi_2 .. bfi_59 bfi_60
e big_five_01_trust big_five_02_change ... big_five_59_test bbig_five_60_lat
Data values:
The data should be coded with the original scoring system 1-5. The data should not have
implemented necessary reversal of answers for any of the questions, the functions will take care
of this.
References:
Soto, C.J., & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a
hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of
Personality and Social Psychology, 113(1), 117-143. https://doi.org/10.1037/pspp0000096
Usage
bfi_compute(
data,
type = c("domains"”, "facets"),
keep_all = FALSE,
prefix = "bfi_"
)
bfi_compute_domains(
data,
domains = c("extraversion”, "agreeableness"”, "conscientiousness”,
"negative emotionality”, "open-mindedness”),
keep_all = FALSE,
prefix = "domain_"

)

bfi_compute_facets(

)

data,
facets = c("sociability"”, "assertiveness”, "energy”, "compassion”, "respectful”,
"trust"”, "organization”, "productive”, "responsibility"”, "anxiety"”, "depression”
"emotional volatility”, "intellectual curiosity”, "aesthetic sensebility”,
"creative imagination”),
keep_all = FALSE,
prefix = "facet_"

https://doi.org/10.1037/pspp0000096

8 bfi_domain

Arguments
data data.frame containing bfi data
type Choose domains or facets. Default is both
keep_all logical, append to data.frame
prefix string to prefix column names of computed values
domains string vector of domains to compute
facets string vector of facets to compute

Value

data.frame with calculated scores

Functions

e bfi_compute_domains(): Compute BFI-2 domains and return in a data.frame

* bfi_compute_facets(): Compute BFI-2 domains and return in a data.frame

Examples

library(dplyr)

Making some test data

test_data <- tibble(
id = rep(1:10, each = 60),
name = rep(sprintf("bfi_%02d", 1:60), 10),
value = lapply(1:10, function(x){

sample(1:5, size = 60, replace = TRUE)

}) %>% unlist()

) %%
tidyr::pivot_wider()

bfi_compute(test_data)
bfi_compute(test_data, prefix = "bfi_")

bfi_domain BFI-2 Domain computations

Description

Calculate the domains of the BFI-2

bfi_domain

Usage

bfi_domain_extravers(
data,
cols = matches("01$|06$|11$]16$]21$]|26%|31$|36$|41$|46%$]|51$]56%"),
reverse = TRUE,

)

bfi_domain_agreeable(
data,
cols = matches("02$|07$|12$117%$122%$]27%$|32%$|37$|42%$|47%$|52%$|57%"),
reverse = TRUE,

)

bfi_domain_conscient(
data,
cols = matches("03$]|08%|13$]|18%$|23%$|28%]33%|38%|43$|48%|53%]|58%"),
reverse = TRUE,

)...

bfi_domain_negemotion(
data,
cols = matches("04$]09%[14$]|19$]24%$|29%|34%$]39%|44$]49%|54%]59%"),
reverse = TRUE,

)

bfi_domain_openminded(
data,
cols = matches("05%$|10%$|15%$|20%$]|25%$]|30%|35%|40%|45%$|50%$|55%$]60%"),
reverse = TRUE,

Arguments
data data.frame with BFI data in
cols tidyselector(s) of which columns data are in
reverse logical. If reversal is needed (default) or not
other arguments to bfi_reversal
Value

a vector with computed domain values.

10 bfi_facet

Functions

e bfi_domain_extravers(): Calculate the extraversion domain.

* bfi_domain_agreeable(): Calculate the agreeableness domain.

e bfi_domain_conscient(): Calculate the conscientiousness domain.

* bfi_domain_negemotion(): Calculate the negative emotionality domain.

* bfi_domain_openminded(): Calculate the open-minded domain.

Examples

library(dplyr)

Making some test data

test_data <- dplyr::tibble(
id = rep(1:10, each = 60),
name = rep(sprintf("bfi_%02d", 1:60), 10),
value = lapply(1:10, function(x){

sample(1:5, size = 60, replace = TRUE)

}) %>% unlist()

) %%
tidyr::pivot_wider()

bfi_domain_extravers(test_data)
bfi_domain_conscient(test_data)

bfi_facet BFI-2 Facet computations

Description

Calculate the facets of the BFI-2

Usage

bfi_facet_sociability(
data,
cols = matches("01$|16$|31%]|46%"),
reverse = TRUE,

bfi_facet_assertive(
data,
cols = matches("06%$|21$|36%|51%"),
reverse = TRUE,

bfi_facet

bfi_facet_energy(data, cols

bfi_facet_compassion(
data,

matches("11%$|26%$|41$|56%"), reverse = TRUE,

cols = matches("02$|17$|32%$]|47%"),

reverse = TRUE,

)

bfi_facet_respectful(
data,

cols = matches("07$|22%$|37%$]52%"),

reverse = TRUE,
)
bfi_facet_trust(data, cols =

bfi_facet_organization(
data,

m

atches("12%$|27$|42%$|57$%"), reverse = TRUE,

cols = matches("03$|18%|33%|48%"),

reverse = TRUE,

)

bfi_facet_productive(
data,

cols = matches("08%|23%$|38%|53%"),

reverse = TRUE,

)...

bfi_facet_responsibility(
data,

cols = matches("13$]28%[43%$]58%"),

reverse = TRUE,
)
bfi_facet_anxiety(data, cols

bfi_facet_depression(
data,

matches("04%$|19%$|34%$|49%"), reverse = TRUE,

cols = matches("09%|24%$|39%|54%"),

reverse = TRUE,

L)

11

.2

.2

12

bfi_facet_emovolatility(
data,
cols = matches("14$]29%[44%$]|59%"),
reverse = TRUE,

)

bfi_facet_intcuriosity(
data,
cols = matches("10$]|25%|40%]|55%"),
reverse = TRUE,

)

bfi_facet_aestheticsens(
data,
cols = matches("05%$|20%$|35%|50%"),
reverse = TRUE,

)...

bfi_facet_imagination(
data,
cols = matches("15%$]|30$|45%|60%"),
reverse = TRUE,

Arguments
data data.frame with BFI data in
cols tidyselector(s) of which columns data are in
reverse logical. If reversal is needed (default) or not
other arguments to bfi_reversal
Value

a vector with computed domain values.

Functions

* bfi_facet_sociability(): Calculate the sociability facet.

e bfi_facet_assertive(): Calculate the assertive facet.

* bfi_facet_energy(): Calculate the energy level facet.

* bfi_facet_compassion(): Calculate the compassion facet.

* bfi_facet_respectful(): Calculate the respectfulness facet.
e bfi_facet_trust(): Calculate the trust facet.

bfi_facet

bfi_reversal 13

e bfi_facet_organization(): Calculate the organization facet.

e bfi_facet_productive(): Calculate the productive facet.

* bfi_facet_responsibility(): Calculate the responsibility facet.

* bfi_facet_anxiety(): Calculate the anxiety facet.

e bfi_facet_depression(): Calculate the depression facet.

* bfi_facet_emovolatility(): Calculate the emotional volatiliity facet.
e bfi_facet_intcuriosity(): Calculate the intellectual curiosity facet.

* bfi_facet_aestheticsens(): Calculate the aesthetic sensibility facet.

* bfi_facet_imagination(): Calculate the creative imagination facet.

Examples

library(dplyr)

Making some test data

test_data <- tibble(
id = rep(1:10, each = 60),
name = rep(sprintf("bfi_%02d", 1:60), 10),
value = lapply(1:10, function(x){

sample(1:5, size = 60, replace = TRUE)

}) %>% unlist()

) %%
tidyr::pivot_wider()

bfi_facet_sociability(test_data)
bfi_facet_assertive(test_data)

bfi_reversal Big-5 Item reversals

Description

Big-5 Item reversals

Usage
bfi_reversal(data, ...)
Arguments
data Data with big-5 columns
Column selection to reverse
Value

data.frame with specified columns reversed

14 edu_compile

Examples

data <- dplyr::tibble(
col_01 = c(1:5, 3, 5, 4),
col_02 = c(1:5, 3, 5, 4)
)

bfi_reversal(data, col_01)

edu_compile Compile education across sources

Description
Compiles education from participant, mother or father depending on source availability. Made for
ease of testing and reporting education SES of family

Usage

edu_compile(data, participant, mother, father)

Arguments
data MOAS-like data.frame
participant unquoted column of 4 category education for participant
mother unquoted column of 4 category education for participant’s mother
father unquoted column of 4 category education for participant’s father
Value

dataframe with three new columns

See Also

Other edu_functions: edu_compute(), edu_factorise(), edu_levels2name(), edu_levels(),
edu_reduce(), edu_to_years()

Examples

edu <- data.frame(
edud4 = c("3", "High school”, 1, NA,
"University/University college (> 4 years)”, NA,
"University/University college (< 4 years)"),
edu9 = c(7,7,8,NA,"Primary school (6 years)”,5, 9),
edu_years = c(NA, 12, 9, NA, 19, 19, NA),
mother = c(”3", "High school”, 1, NA,
"University/University college (> 4 years)”,
"University/University college (> 4 years)”,
"University/University college (< 4 years)"),
father = ¢(7,7,8,4,"Primary school (6 years)”,5, 10),

edu_compute 15

stringsAsFactors = FALSE

)
library(dplyr)
edu %>%
mutate(
mother = ifelse(mother == "3", NA, mother),
mother = edu4_factorise(mother),

father = edu9_reduce(edu9_factorise(father))
) %%
edu_compile(

participant = edu4,

mother = mother,

father = father

)

edu_compute Fill inn Education in MOAS

Description

Using existing data in the MOAS, fills in gaps, converts from on type of coding to another etc.

Usage

edu_compute(
data,
edu4 = edu_coded4,
edu9 = edu_coded10,
edu_years = edu_years,

prefix = "edu_",
keep_all = TRUE
)
Arguments
data MOAS-like data
edu4 unquoted column containing Education coded in 4 categories
edu9 unquoted column containing Education coded in 4 categories
edu_years unquoted column containing Education in years to highest completed
prefix string to prefix column names of computed values
keep_all logical, append to data.frame
Value

a data.frame

16 edu_factorise

See Also

Other edu_functions: edu_compile(), edu_factorise(), edu_levels2name(), edu_levels(),
edu_reduce(), edu_to_years()

Examples

edu <- data.frame(
edud4 = c("3", "High school”, 1, NA,
"University/University college (> 4 years)”, NA,
"University/University college (< 4 years)"),
edu9 = c(7,7,8,NA,"Primary school (6 years)"”,5, 9),
edu_years = c(NA, 12, 9, NA, 19, 19, NA),
mother = c(”3", "High school”, 1, NA,
"University/University college (> 4 years)”,
"University/University college (> 4 years)”,
"University/University college (< 4 years)"),
father = ¢(7,7,8,4,"Primary school (6 years)”,5, 10),
stringsAsFactors = FALSE

)
edu_compute(edu,
edu4 = edu4,
edu9 = edu9,

edu_years = edu_years)

edu_factorise Create factor from education vector

Description

Will convert even a mixed character vector (combining numbers and text) of education levels 10
and 4 to a factor.

Usage

edu_factorise(x, levels)
edu4_factorise(x)

edu9_factorise(x)

Arguments

X character vector

levels levels returned from the edu_levels() function

edu_levels 17

Details
Specialized returns

* edu_factorise - with option to choose number of levels
* edud_factorise - directly transform vector coded in 4-level scheme

* edu9_factorise - directly transform vector coded in 9-levels scheme

Value

factor

See Also

Other edu_functions: edu_compile(), edu_compute(), edu_levels2name(), edu_levels(), edu_reduce(),
edu_to_years()

Examples

edu9 <- c("7", "7", "8", NA, "Primary school (6 years)"”, "5", "9")
edu_factorise(edu9, 9)
edu9_factorise(edu9)

edu_levels Get education levels scheme

Description
Keeping track of the different educational coding schemes at LCBC can be tricky. This formula
contains the two current types of coding schemas employed by LCBC.

Usage

edu_levels(levels = 4)
edud_levels()

edu9_levels()

Arguments

levels how many levels to return (either 4 or 9)

Details
Specialized returns

* edu_levels - returns named numeric vector for levels specified
e edud_levels - returns named numeric vector for 4-levels scheme

e edu9_levels - returns named numeric vector for 9-levels scheme

18

Value

named numeric vector

See Also

edu_levels2name

Other edu_functions: edu_compile(), edu_compute(), edu_factorise(), edu_levels2name(),

edu_reduce(), edu_to_years()

Examples

edu_levels(4)
edu_levels(9)

edu4_levels()
edu9_levels()

edu_levels2name Alter levels to name

Description

Change educational coded levels to names of the levels

Usage

edu_levels2name(x, levels)
edu4_levels2name(x)

edu9_levels2name(x)

Arguments

X vector containing levels

levels numeric of number of levels (4 or 10)

Details
Specialized returns

* edu_levels2name - transforms levels to names for levels specified
* edu4_levels2name - transforms levels to names for 4-levels scheme

¢ edu9_levels2name - transforms levels to names for 9-levels scheme

Value

character vector

edu_map 19

See Also

Other edu_functions: edu_compile(), edu_compute(), edu_factorise(), edu_levels(), edu_reduce(),
edu_to_years()

Examples

edu4 <- c(9, 9, 16, 19)
edu_levels2name(edu4, 4)
does the same as
edu4_levels2name(edu4)

edu9 <- c(o, 6, 21, 16)
edu_levels2name(edu9, 9)
does the same as
edu9_levels2name(edu9)

edu_map Create a mapped table for conversion

Description

Converting from a high-level educational coding to a lower level one is cumbersome. This function
bases it self in any coding scheme specified in edu_levels and tries creating a conversion table
between two specified schemas.

Usage

edu_map(from = 9, to = 4)

edu_map_chr(from = 9, to = 4)
edu_map_num(from = 9, to = 4)
Arguments
from schema levels to convert from
to shcema levels to convtert to
Details

Specialized returns

* edu_map - returns a data.frame of two named vectors
* edu_map_chr - returns a data.frame with two character vectors

* edu_map_num - returns a data.frame with two numeric vectors

20 edu_reduce

edu_recode Recode new 9 levels into old

Description

New nettskjema data requires codebook to not have special characters, and as such the old and new
coding scheme does not fit. This function turns new coding scheme into the old, wanted one

Usage

edu_recode(x, names = TRUE)

Arguments

X character vector of old scheme

names logical. toggle return of names rather than numbers

Value

character

Examples

eds <- c(NA, "UnderGrad_BA", "HighSchool_Initial”, "PostGrad_MA",
"PostGrad_PhD", "HighSchool”, "Junior-HighSchool”, "HighSchool_addition”)
edu_recode(eds)

eds <- ¢(1,5,8,2,6,9,1,10)
edu_recode(eds, names = FALSE)

edu_reduce Reduce education categories

Description

These functions will aid in converting one education scheme into another. While you may attempt
to go from a low level to a high (from 4 to 9), there is no way to actually do that in a consistent way
that will correctly reflect the underlying data.

Usage

edu_reduce(x, from, to)

edu9_reduce(x, to = 4)

edu_to_years 21

Arguments
X character vector
from factor level to transform from
to factor level to transform to
Details

Always go from a higher level scheme to a lower one (currently from 9 to 4 only)

Specialized returns

* edu_reduce - reduce with own to and from specification

* edu9_reduce - directly reduce from 9 to 4

Value

factor

See Also

Other edu_functions: edu_compile(), edu_compute(), edu_factorise(), edu_levels2name(),
edu_levels(), edu_to_years()

Examples

edu9 <- c("7", "7", "8", NA, "Primary school (6 years)”, "5", "9")
edu_reduce(edud, 9, 4)
edu9_reduce(edu9)

edu_to_years Turn education data to years

Description

Turn education data to years

Usage

edu_to_years(x, levels)
edu4_to_years(x)

edu9_to_years(x)

Arguments

X character vector

levels levels returned from the edu_levels() function

22 ehi_change

Details
Specialized returns
* edu_to_years - Alter education to years specifying number of levels

* edud_to_years - directly alter 4-level coded education to years

* edu9_to_years - directly alter 9-level coded education to years

Value

vector of integers

See Also

Other edu_functions: edu_compile(), edu_compute(), edu_factorise(), edu_levels2name(),
edu_levels(), edu_reduce()

Examples

edu4 <- c("3", "High school”, "1", NA,
"University/University college (> 4 years)”,
NA, "University/University college (< 4 years)")

edu_to_years(edu4, 4)
edu4_to_years(edu4)

edu9 <- c("7", "7", "8", NA, "Primary school (6 years)", "5", "9")
edu_to_years(edu9, 9)
edu9_to_years(edu9)

ehi_change Create vector with only correct values

Description

Since the coding we have often uses negative numbers to indicate left-hand preferences, a special-
ized function is here to return a vector with only the values asked for.

Usage

ehi_change(x, direction = 1)

Arguments

X numeric vector

direction either 1 for positive, -1 for negative

ehi_compute 23

Details
If direction is set to 1, returns only positive numbers, negative and 0 returns as NA. If direction is
set to -1, returns only negative numbers, positive and O returns as NA.

Value

numeric vector

ehi_compute Edinburgh handedness inventory

Description

Compute all variables of ehi, using other functions in this package. Will return the given data.frame
with three additional columns, the laterality quotient (LQ), the laterality factor (Coded), and the
nominal laterality code (Nominal).

Usage

ehi_compute(
data,
cols = matches(”*ehi_[0-9]1[0-91%"),
writing = ehi_01,

keep_all = TRUE,

prefix = "ehi_"

)
Arguments

data data.frame containing ehi data

cols tidyselected columns of all ehi data

writing numeric vector of writing preference (-2,-1,0,1,2)

additional arguments to ehi_factorise_lqa

keep_all logical, append to data.frame

prefix string to prefix column names of computed values
Details

Background:

The Edinburgh Handedness Inventory is a measurement scale used to assess the dominance of a
person’s right or left hand in everyday activities, sometimes referred to as laterality. The inventory
can be used by an observer assessing the person, or by a person self-reporting hand use. The latter
method tends to be less reliable due to a person over-attributing tasks to the dominant hand.

ehi_compute

Scoring:

The EHI has several measures that can help assess a person’s laterality.

answer value nominal lg lg_cat Iga_cat
Left dominance -2 left -100 left left

Left preference -1 left -40 left ambidexter
No preference 0 ambidexter 0 right ambidexter
Right preference 1 right 40 right ambidexter
Right dominance 2 right 100 right right

Nominal:

The easiest measure from the EHI is the nominal laterality value, which is just the answer to the
first question on hand preference when writing. This simple index just treat negative answers as
"left" dominance, positive number as "right" dominance, and a 0 as ambidextrous. Note: The
original paper by Oldfield (1971) does not explicitly state a category for "Ambidextrous". It is
very rare that a person does not have a clear preference on writing hand, even if they can write
with both hands. This category is only added in this package to handle the possible case of
someone answering "No preference".

min max category

-2 -1 left
0 0 ambidexter
1 2 right

Laterality quotient (lg):

The total score of the EHI is more than just summing the values for each answer. The laterality
quotient (LQ) uses the answers to all the questions. The LQ can take values from -100 to 100,
and is calculated by taking the sum of all positive answers subtracting the sum of absolute values
of the negative answers, divided by the sum of both, and multiplied by 100.

katex: :katex_html(equation)

Laterality index:

The laterality index is based on the laterality quotient (above) and categorises answers into to
categories, Left and Right. The Oldfield (1971) paper mentions "indeterminate handedness" a
couple of times in the paper, but the case for "true" ambidextrous is not made, and as such the
inventory does not have official categories for that. As the index is based on the quotient, that
ranges from -100 to 100, getting a perfect @ LQ is very unlikely, and as indicated in the paper,
such score is assumed to belong to the Right hand part of the scale.

min max category
-100 -1 left
0 100 right

An alternate laterality index is also often employed, where scores between -40 and 40 are treated
as ambidextrous.

ehi_compute_Iq 25

Data requirements:

One row of data should refer to a single questionnaire answered, and as such, if a person has
answered multiple times, these should appear on separate rows with columns identifying ID and
time point per observation.

Column names:

For ease, we recommend naming the columns in a consistent way, so the functions in this
package become easier to use. The LCBC database follows a naming scheme that prefixes all
columns with ehi_ and ends with a zero-padded double digit indicator of the question number.

Data values:
The cell values in the data should be coded from -2 through O to 2, and there should be a single
value per question.

value category

-2 Left hand dominance
Left hand preference
No preference
Right hand preference
Right hand dominance

N = O =

References:

Oldfield, RC (March 1971) The assessment and analysis of handedness: The Edinburgh inventory.
Neuropsychologia. 9 (1): 97-113. doi:10.1016/0028-3932(71)90067-4

Verdino, M; Dingman, S (April 1998). Two measures of laterality in handedness: the Edinburgh
Handedness Inventory and the Purdue Pegboard test of manual dexterity. Perceptual and Motor
Skills. 86 (2): 476-8. doi:10.2466/pms.1998.86.2.476

Knecht, S; Driger, B; Deppe, M; Bobe, L; Lohmann, H; Floel, A; Ringelstein, E-B; Henningsen,
H (December 2000). Handedness and hemispheric language dominance in healthy humans.
Brain. 123 (12): 2512-8. doi:10.1093/brain/123.12.2512.

Value

data.frame

See Also

Other ehi_functions: ehi_compute_1q(), ehi_factorise_1q(), ehi_factorise_nominal()

ehi_compute_lq Laterality Quotient

https://www.sciencedirect.com/science/article/abs/pii/0028393271900674?via%3Dihub
https://doi.org/10.2466%2Fpms.1998.86.2.476
https://doi.org/10.1093%2Fbrain%2F123.12.2512

26 ehi_compute_Iq

Description

The laterality quotient is calculated using all the answers on the ehi, with the formula: (pos-
neg)/(pos+neg)*100)

Background:

The Edinburgh Handedness Inventory is a measurement scale used to assess the dominance of a
person’s right or left hand in everyday activities, sometimes referred to as laterality. The inventory
can be used by an observer assessing the person, or by a person self-reporting hand use. The latter
method tends to be less reliable due to a person over-attributing tasks to the dominant hand.

Scoring:

The EHI has several measures that can help assess a person’s laterality.

answer value nominal g 1q_cat lqa_cat
Left dominance -2 left -100 left left

Left preference -1 left -40 left ambidexter
No preference 0 ambidexter 0 right ambidexter
Right preference 1 right 40 right ambidexter
Right dominance 2 right 100 right right

Nominal:

The easiest measure from the EHI is the nominal laterality value, which is just the answer to the
first question on hand preference when writing. This simple index just treat negative answers as
"left" dominance, positive number as "right" dominance, and a 0 as ambidextrous. Note: The
original paper by Oldfield (1971) does not explicitly state a category for "Ambidextrous". It is
very rare that a person does not have a clear preference on writing hand, even if they can write
with both hands. This category is only added in this package to handle the possible case of
someone answering "No preference".

min max category

-2 -1 left
0 0 ambidexter
1 2 right

Laterality quotient (lg):

The total score of the EHI is more than just summing the values for each answer. The laterality
quotient (LQ) uses the answers to all the questions. The LQ can take values from -100 to 100,
and is calculated by taking the sum of all positive answers subtracting the sum of absolute values
of the negative answers, divided by the sum of both, and multiplied by 100.

katex: :katex_html (equation)

Laterality index:

The laterality index is based on the laterality quotient (above) and categorises answers into to
categories, Left and Right. The Oldfield (1971) paper mentions "indeterminate handedness" a
couple of times in the paper, but the case for "true" ambidextrous is not made, and as such the
inventory does not have official categories for that. As the index is based on the quotient, that

ehi_compute_Iq 27

ranges from -100 to 100, getting a perfect @ LQ is very unlikely, and as indicated in the paper,
such score is assumed to belong to the Right hand part of the scale.

min max category
-100 -1 left
0 100 right

An alternate laterality index is also often employed, where scores between -40 and 40 are treated
as ambidextrous.

Data requirements:

One row of data should refer to a single questionnaire answered, and as such, if a person has
answered multiple times, these should appear on separate rows with columns identifying ID and
time point per observation.

Column names:

For ease, we recommend naming the columns in a consistent way, so the functions in this
package become easier to use. The LCBC database follows a naming scheme that prefixes all
columns with ehi_ and ends with a zero-padded double digit indicator of the question number.

Data values:
The cell values in the data should be coded from -2 through O to 2, and there should be a single
value per question.

value category

-2 Left hand dominance
Left hand preference
No preference
Right hand preference
Right hand dominance

N = O =

References:

Oldfield, RC (March 1971) The assessment and analysis of handedness: The Edinburgh inventory.
Neuropsychologia. 9 (1): 97-113. doi:10.1016/0028-3932(71)90067-4

Verdino, M; Dingman, S (April 1998). Tiwo measures of laterality in handedness: the Edinburgh
Handedness Inventory and the Purdue Pegboard test of manual dexterity. Perceptual and Motor
Skills. 86 (2): 476-8. doi:10.2466/pms.1998.86.2.476

Knecht, S; Driger, B; Deppe, M; Bobe, L; Lohmann, H; Floel, A; Ringelstein, E-B; Henningsen,
H (December 2000). Handedness and hemispheric language dominance in healthy humans.
Brain. 123 (12): 2512-8. doi:10.1093/brain/123.12.2512.

Usage

ehi_compute_lq(data, cols = matches("*ehi_[0-9]1[0-91%"))

Arguments

data data.frame containing ehi data

cols tidyselected columns of all ehi data

https://www.sciencedirect.com/science/article/abs/pii/0028393271900674?via%3Dihub
https://doi.org/10.2466%2Fpms.1998.86.2.476
https://doi.org/10.1093%2Fbrain%2F123.12.2512

28 ehi_factorise_Iq

Value

numeric

See Also

Other ehi_functions: ehi_compute(), ehi_factorise_1q(), ehi_factorise_nominal()

ehi_factorise_lq Factorise laterality quotient

Description

While the laterality quotient is nice to use if your sample and variance is large enough for analyses,
in most cases you will need to report the categories of laterality your participants fall within. This
function takes the laterality quotient as computed by ehi_compute_lq and creates a factor using
common specifications.

Usage

ehi_factorise_lq(lq = ehi_lq)

ehi_factorise_lga(

la,
min = -70,
max = 70,
levels = c("left”, "ambidexter”, "right")
)
Arguments
1q numeric vector calculated by ehi_compute_lq
min minimum value for ambidexter specification (default = -70)
max maximum value for ambidexter specification (default = 70)
levels the levels for the 1qg component. Usually c("left", "ambidexter", "right").
Details
Background:

The Edinburgh Handedness Inventory is a measurement scale used to assess the dominance of a
person’s right or left hand in everyday activities, sometimes referred to as laterality. The inventory
can be used by an observer assessing the person, or by a person self-reporting hand use. The latter
method tends to be less reliable due to a person over-attributing tasks to the dominant hand.

ehi_factorise_Iq 29

Scoring:

The EHI has several measures that can help assess a person’s laterality.

answer value nominal lg lg_cat Iga_cat
Left dominance -2 left -100 left left

Left preference -1 left -40 left ambidexter
No preference 0 ambidexter 0 right ambidexter
Right preference 1 right 40 right ambidexter
Right dominance 2 right 100 right right

Nominal:

The easiest measure from the EHI is the nominal laterality value, which is just the answer to the
first question on hand preference when writing. This simple index just treat negative answers as
"left" dominance, positive number as "right" dominance, and a 0 as ambidextrous. Note: The
original paper by Oldfield (1971) does not explicitly state a category for "Ambidextrous". It is
very rare that a person does not have a clear preference on writing hand, even if they can write
with both hands. This category is only added in this package to handle the possible case of
someone answering "No preference".

min max category

-2 -1 left
0 0 ambidexter
1 2 right

Laterality quotient (lg):

The total score of the EHI is more than just summing the values for each answer. The laterality
quotient (LQ) uses the answers to all the questions. The LQ can take values from -100 to 100,
and is calculated by taking the sum of all positive answers subtracting the sum of absolute values
of the negative answers, divided by the sum of both, and multiplied by 100.

katex: :katex_html(equation)

Laterality index:

The laterality index is based on the laterality quotient (above) and categorises answers into to
categories, Left and Right. The Oldfield (1971) paper mentions "indeterminate handedness" a
couple of times in the paper, but the case for "true" ambidextrous is not made, and as such the
inventory does not have official categories for that. As the index is based on the quotient, that
ranges from -100 to 100, getting a perfect @ LQ is very unlikely, and as indicated in the paper,
such score is assumed to belong to the Right hand part of the scale.

min max category
-100 -1 left
0 100 right

An alternate laterality index is also often employed, where scores between -40 and 40 are treated
as ambidextrous.

30

ehi_factorise_Iq

Data requirements:

One row of data should refer to a single questionnaire answered, and as such, if a person has
answered multiple times, these should appear on separate rows with columns identifying ID and
time point per observation.

Column names:

For ease, we recommend naming the columns in a consistent way, so the functions in this
package become easier to use. The LCBC database follows a naming scheme that prefixes all
columns with ehi_ and ends with a zero-padded double digit indicator of the question number.

Data values:
The cell values in the data should be coded from -2 through O to 2, and there should be a single
value per question.

value category

-2 Left hand dominance
Left hand preference
No preference
Right hand preference
Right hand dominance

N = O =

References:

Oldfield, RC (March 1971) The assessment and analysis of handedness: The Edinburgh inventory.
Neuropsychologia. 9 (1): 97-113. doi:10.1016/0028-3932(71)90067-4

Verdino, M; Dingman, S (April 1998). Tiwo measures of laterality in handedness: the Edinburgh
Handedness Inventory and the Purdue Pegboard test of manual dexterity. Perceptual and Motor
Skills. 86 (2): 476-8. doi:10.2466/pms.1998.86.2.476

Knecht, S; Driger, B; Deppe, M; Bobe, L; Lohmann, H; Floel, A; Ringelstein, E-B; Henningsen,
H (December 2000). Handedness and hemispheric language dominance in healthy humans.
Brain. 123 (12): 2512-8. doi:10.1093/brain/123.12.2512.

* ehi_factorise_lq - returns original two-factor specification
* ehi_factorise_lqa - returns commonly used three-factor specification

Value

factor

See Also

Other ehi_functions: ehi_compute_1q(), ehi_compute(), ehi_factorise_nominal()

Examples

LQ <- c(1, 40, 70, -20, 0, 100, -90)
ehi_factorise_1q(LQ)
ehi_factorise_lqga(LQ)
ehi_factorise_lga(LQ, min = -40, max = 60)

https://www.sciencedirect.com/science/article/abs/pii/0028393271900674?via%3Dihub
https://doi.org/10.2466%2Fpms.1998.86.2.476
https://doi.org/10.1093%2Fbrain%2F123.12.2512

ehi_factorise_nominal 31

ehi_factorise_nominal Nominal laterality factor

Description
Using the answers to the first question on writing from the Edinburgh handedness inventory, a
nominal scale of three factors can be returned.

Usage

ehi_factorise_nominal(writing = ehi_01)

Arguments

writing numeric vector of writing preference (-2,-1,0,1,2)

Value

factor

See Also

Other ehi_functions: ehi_compute_1q(), ehi_compute(), ehi_factorise_1q()

Examples

writing <- c(2, 2, -1, 0, 1, -2)
ehi_factorise_nominal(writing)

ehi_values Sum ehi columns

Description

Calculate the sum on non-NA values in all columns in the specified direction(1 == sum all positives,
-1 sum absolutes values of negatives)

Usage

ehi_values(data, cols = matches("*ehi_[0-9]1[0-9]$"), direction = 1)
Arguments

data data.frame containing ehi data

cols tidy-selection of all ehi columns

direction sum positive or negatives (1 for positive, -1 for negative)

32 gds_binary

Value

numeric vector

gds_alter_values Change coding of GDS to correct numeric values

Description

Necessary step for computing the total score

Usage

gds_alter_values(
data,
values = gds_values(),
reverse = FALSE,
cols = matches("01$|05$|07$|09%$|15%$|19%|21$|27$|29%|30%")

)
Arguments
data data.frame with GDS data in it
values named vector of 2 providing the coding for Yes and No answers c(Yes = 1, No
=2)
reverse reverse logic
cols GDS data columns
See Also

Other gds_functions: gds_binary(), gds_compute_sum(), gds_values()

gds_binary Binarise GDS values

Description
internal function to make all "yes" answers equal to 1, and all "no" to 0. This for convenience of
calculations later.

Usage

gds_binary(x, values = gds_values())

gds_compute_sum 33

Arguments
X vector of yes and no coding
values named vector of 2 providing the coding for Yes and No answers c(Yes = 1, No
=2)
Value

vector of 0’s and 1’s

See Also

Other gds_functions: gds_alter_values(), gds_compute_sum(), gds_values()

Examples

gds_binary(c(1,1,0,NA,1), gds_values(1,0))
gds_binary(c(“y“,"y“,"n",NA,”y"), gds_VaerS(yeS — nyn, no = Ilnll))

gds_compute_sum Compute the GDS sum

Description

The Geriatric Depression Scale (GDS) is an instrument designed specifically for rating depression
in the elderly. It can be administrated to healthy, medically ill, and mild to moderately cognitively
impaired older adults. As a general rule, GDS is administrated in LCBC to older adults with a lower
cut off around 60 years. However, please consult the instructions for each project, as this guideline
has been implemented at different time points across the projects.

The questionnaire consists of 30 questions tapping into a wide variety of topics relevant to depres-
sion, including cognitive complaints, motivation, thoughts about the past and the future, self-image,
and mood itself. The answers should be based the participants’ feelings throughout the last week.

Twenty of the questions indicate the presence of depression when answered positively, while the
ten remaining indicate depression when answered negatively (see scoring instructions below). The
questionnaire is scored accordingly, giving one point for each statement that affirms a depressive
symptom. The sum of these scores yields one total score, with a possible range between 0 and 30.
##Scoring The GDS is quite straight forward in its format, a series of 30 questions that take a yes or
no answer. This binary coding makes it quite easy to work with. Several of the questions, however,
are formulated in such a way that they require a reversal of the coding before the total score can be
summed. The questions which require reversal of coding are, 01, 05, 07, 09, 15, 19, 21, 27, 29, 30,
meaning answering "yes" to these should be altered to 0, and "no" altered to 1, before calculating
the sum score. The total GDS score is after reversal, a simple addition of all the answers into a
single score.

One point is given for any “No” answered to the following questions: 1, 5, 7, 9, 15, 19, 21, 27, 29
and 30

and one point is given for every “Yes” answered on the following questions: 2, 3, 4, 6, 8, 10, 11,
12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28

34

gds_compute_sum

Depression categories:

There are 3 categories of severity for the GDS total score. Below or equal to 9 is "Normal", above
19 is "Severe depression"”, and the remaining fall within "Mild depression".

GDS score Depression category

0-9 Normal
10-19 Mild depressive
20-30 Severe depressive

Data requirements:

Column naming:

The easiest is to have data coded as in the NOAS, as this will let you use default values for
the arguments. The column names in the NOAS all start with gds_ and then are followed by a
two-digit numbering of the question:

gds_01, gds_02, gds_03, ... gds_28, gds_29, gds_30

If your data is coded differently, a consistent naming scheme should help you use the functions
anyway.

Data values:

Each row of data should belong to a single answer to the entire questionnaire. Meaning if you
have multiple answers to the questionnaire over time, these should be placed in another row,
duplicating the participant ID, together with a column indicating the timepoint the data was
collected in. Data values are binary yes and no answers to the GDS. While the functions are
made in such a way that any type of binary coding works well, the default is set to be yes = 1, no
= 0. These can be altered by applying the gds_values functions to the other functions asking
for the coding schema.

References:

Depression Screening Scale: A Preliminary Report, J Psychiatr Res, 17 (1), 37-49, doi: 10.1016/0022-
3956(82)90033-4

E L Lesher 1, J S Berryhill (1994), Validation of the Geriatric Depression Scale — Short Form
Among Inpatients, J Clin Psychol, 50 (2), 256-60, doi: 10.1002/1097-4679(199403)50:2<256::aid-
jclp2270500218>3.0.c0;2-e

Usage

gds_compute_sum(

)

data,

cols = dplyr::matches(”"[0-3]1[0-91%"),

cols_rev = dplyr::matches("01$|05%|07$(09%|15$|19%$|21%$|27%$|29%|30%"),
values = gds_values()

gds_factorise(gds_sum)

gds_compute(

data,
cols = dplyr::matches(”"[0-9][0-9]%$"),

https://www.sciencedirect.com/science/article/abs/pii/0022395682900334?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/0022395682900334?via%3Dihub
https://doi.org/10.1002/1097-4679(199403)50:2%3C256::aid-jclp2270500218%3E3.0.co;2-e
https://doi.org/10.1002/1097-4679(199403)50:2%3C256::aid-jclp2270500218%3E3.0.co;2-e

gds_values 35

cols_rev = dplyr::matches("01$|05%|07$|09%|15$|19%$]|21%$|27%$|29%|30%"),
values = gds_values(),

prefix = "gds_",
keep_all = TRUE
)
Arguments
data data.frame with GDS data in it
cols GDS data columns
cols_rev Columns for reversal of binary code
values named vector of 2 providing the coding for Yes and No answers c(Yes = 1, No
=2)
gds_sum numeric vector of GDS sums
prefix string to prefix column names of computed values
keep_all logical, append to data.frame
Value
numeric
factor
data frame
Functions

e gds_compute_sum(): Calculate the total GDS score

e gds_factorise(): Create a factor from the sum of the GDS scores

See Also

Other gds_functions: gds_alter_values(), gds_binary(), gds_values()
Other gds_functions: gds_alter_values(), gds_binary(), gds_values()
Other gds_functions: gds_alter_values(), gds_binary(), gds_values()

gds_values Specify coding scheme for GDS questions

Description

Function to easily set the response coding used in the GDS data.

Usage

gds_values(yes = 1, no = 0)

36 income_bin2nok

Arguments
yes value indicating a positive answer
no value indicating a negative answer
Value

list of yes and no values

See Also

Other gds_functions: gds_alter_values(), gds_binary(), gds_compute_sum()

Examples

gds_values()
gds_values(yes = "YES"”, no = "NO")

income_bin2nok Turn income bins to mean of bin

Description

Older collected income data for LCBC collected income information in 7 bins. Newer data collects
continuous income data. This function converts binned income data from these 7 categories into the
mean income value for each bin.

Usage

income_bin2nok(x)

Arguments

X income bin vector

Value

numeric

Examples

x <= c("< 200k", "600k - 699k", "400k - 499k",
"> 700k", "500k - 599k", "300k - 399k",
"200k - 299k™)

income_bin2nok(x)

income_nok2other 37

income_nok2other Translate NOK to other currency

Description
In order to compare income in Norway to other countries, currency conversions might be necessary.
This function multiplies with the rate provided.

Usage

income_nok2other(x, rate = 0.1)

Arguments

X currency

rate currency translation rate (defaul 0.10 for euro)

Value

numeric

Examples

income_nok2other(c(100, 2930, 13649))
income_nok2other(c(100, 2930, 13649), 0.5)

ipag_compute_met Compute met from IPAQ

Description

The purpose of the International Physical Activity questionnaires (IPAQ) is to provide a set of well-
developed instruments that can be used internationally to obtain comparable estimates of physical
activity. There are two versions of the questionnaire. The short version is suitable for use in national
and regional surveillance systems and the long version provide more detailed information often
required in research work or for evaluation purposes.

Scoring:
Scoring of the IPAQ is based on a metric called METSs, which are multiples of the resting metabolic
rate. The IPAQ scoring description can be found here

Continuous Score:
Expressed as MET-min per week: MET level x minutes of activity/day x days per week
MET levels:

e Light - 3.3 METs
¢ Moderate - 4.0 MET's

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0aGVpcGFxfGd4OjE0NDgxMDk3NDU1YWRlZTM

38 ipaq_compute_met

* Vigorous - 8.0 METs

Total MET-minutes/week = Light (3.3 x min x days) + Mod (4.0 x min x days) + Vig (8.0 x min
x days)

Categorical Score:
Three levels (categories) of physical activity are proposed:
Category 1: Low:

This is the lowest level of physical activity. Those individuals who not meet criteria for cate-
gories 2 or 3 are considered low/inactive.

Category 2: Moderate:
Any one of the following 3 criteria:

* 3 or more days of vigorous activity of at least 20 minutes per day OR

* 5 or more days of moderate-intensity activity or walking of at least 30 minutes per day OR

* 5 or more days of any combination of walking, moderate-intensity or vigorous intensity
activities achieving a minimum of at least 600 MET-min/week.

Category 3: High:

Any one of the following 2 criteria:

* Vigorous-intensity activity on at least 3 days and accumulating at least 1500 MET-minutes/
week OR

* 7 or more days of any combination of walking, moderate-intensity or vigorous intensity
activities achieving a minimum of at least 3000 MET-minutes/week

References:

Depression Screening Scale: A Preliminary Report, J Psychiatr Res, 17 (1), 37-49, doi: 10.1016/0022-
3956(82)90033-4

E L Lesher 1, J S Berryhill (1994), Validation of the Geriatric Depression Scale — Short Form
Among Inpatients, J Clin Psychol, 50 (2), 256-60, doi: 10.1002/1097-4679(199403)50:2<256::aid-
jclp2270500218>3.0.c0;2-e

Usage
ipag_compute_met(minutes = ipaq_2, days = ipaqg_lb, met = ipaqg_mets()$light)
ipag_compute_sum(vigorous, moderate, light)

ipag_compute(
data,
mets = ipaqg_mets(),
light_days = ipaq_b5b,
light_mins = ipaq_6,
mod_days = ipaq_3b,
mod_mins = ipaq_4,
vig_days ipaq_1b,
vig_mins = ipaq_2,
prefix = "ipaq_",
keep_all = TRUE

https://www.sciencedirect.com/science/article/abs/pii/0022395682900334?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/0022395682900334?via%3Dihub
https://doi.org/10.1002/1097-4679(199403)50:2%3C256::aid-jclp2270500218%3E3.0.co;2-e
https://doi.org/10.1002/1097-4679(199403)50:2%3C256::aid-jclp2270500218%3E3.0.co;2-e

ipaq_compute_met

Arguments
minutes vector of numeric minutes
days vector of numeric days
met met number (light = 3.3, moderate = 4.0, vigorous = §8)
vigorous Vector with vigorous met calculated
moderate Vector with moderate met calculated
light Vector with light met calculated
data data.frame containing all the ipaq data
mets list generated with ipaq_mets() (default = ipaq_mets())
light_days column with the days of light activity
light_mins column with the minutes of light activity
mod_days column with the days of moderate activity
mod_mins column with the minutes of moderate activity
vig_days column with the days of vigorous activity
vig_mins column with the minutes of vigorous activity
prefix string to prefix column names of computed values
keep_all logical, append to data.frame
Value
data.frame
Functions

* ipaqg_compute_met(): Calculate mets of an activity type

* ipaq_compute_sum(): Calculate the IPAQ sum based on activities and mets

See Also

Other ipaq_functions: ipag_mets(), ipaq_time_alter()

Examples

ipag_vig_mins <- c(60, 20, 60, 25, 90, 20, @, 75, 60, 30)
ipag_vig_days <- c(1, 3, 2, 5, 6, 1, 1, 2, 2, 4)
ipag_compute_met(ipaq_vig_mins, ipaq_vig_days, met = 8.0)
light = c(1300, 300)

moderate = c(200, 400)

vigorous = c(@, 1300)

ipag_compute_sum(vigorous , moderate, light)

39

40 ipaq_mets

ipag_mets IPAQ mets

Description

IPAQ calculations require specification of met (resting metabolic rate), which are not necessarily
static values. While there are defaults for each of the three categories, there should be the possibility
to alter these with newer research.

Usage

ipag_mets(light = 3.3, moderate = 4, vigorous = 8)

Arguments
light numeric. default 3.3
moderate numeric. default 4.0
vigorous numeric. default 8.0
Details

This is a convenience function if users need to alter the default values for one or more of the
categories and is compatible with the remaining IPAQ functions in this package.

Value

list of three

See Also

Other ipaq_functions: ipaq_compute_met(), ipag_time_alter()

Examples

ipag_mets()
ipag_mets(moderate = 5.1)

ipaq_time_alter 41

ipag_time_alter Alter the time instant columns to decminals

Description

Time is often punched as HH:MM in order to preserve correct time calculations. The ipaq calcu-
lation recure time to be in decimal minutes. This function easily changes HH:MM into decminal
minutes in a data.frame It alters columns directly in the data.frame

Usage

ipag_time_alter(data, cols = c(ipaq_2, ipaq_4, ipaq_6, ipaq._7))

Arguments

data data with columns to alter

cols columns to alter, in tidyselect format

Value

data.frame

See Also

Other ipaq_functions: ipag_compute_met(), ipag_mets()

Examples

dat <- data.frame(
time_1 = c("12:34", "09:33", "22:14"),
time_2 = c(”10:55", "16:45", "18:02")

)

ipag_time_alter(dat, cols = c(time_1, time_2))

is_hm Utility function to locate hm columns

Description

is_hm locates columns that are time (hm) classes

Usage

is_hm(x)

42

Arguments

X vector

Value

logical vector of length==ncol(data)

Examples

Not run:
is_hm(data)

End(Not run)

is_hms

is_hms Utility function to locate hms columns

Description

is_hms locates columns that are time (hms) classes

Usage

is_hms(x)

Arguments

X vector

Value

logical vector of length==ncol(data)

Examples

Not run:
is_hms(data)

End(Not run)

psqi_compute_comp?2 43

psqi_compute_comp?2 Compute all PSQI components and global score

Description

Despite the prevalence of sleep complaints among psychiatric patients, few questionnaires have
been specifically designed to measure sleep quality in clinical populations. The Pittsburgh Sleep
Quality Index (PSQI) is a self-rated questionnaire which assesses sleep quality and disturbances
over a 1-month time interval. Nineteen individual items generate seven “‘component” scores: sub-
jective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use
of sleeping medication, and daytime dysfunction. The sum of scores for these seven components
yields one global score. ##Scoring

component name description

1 subjective sleep quality Answerto q 6
2 sleep latency Scaled sum of number of minutes before sleep (q 2) and evaluation of sleep withi
3 sleep duration Scaled score of number of hours before one falls asleep (q 4), scaled to a 5 point ¢
4 habitual sleep efficiency hours of sleep (q 4) divided by bedtime (q 1) subtracted from rising time (q 3), an
5 sleep disturbances Sum of evaluation of sleep within 30min (q 5a) and all remaining questions on sl
6 use of sleeping medication ~Answer to question on use of sleep medication (q 7)
7 daytime dysfunction Sum of evaluation of staying awake (q 8) and evaluation of keeping enthusiastic (

global score sum of the above. If any of the above is not possible to calculate, the global sum is also not calculat

Data requirements:

Column names:
Questions with multiple subquestions should be named in a similar manner, suffixed by the
alphabetical index (psqi_Sa, psqi_Sb etc.). For questions 5j and 10j, the frequency of oc-
curence should have the names psqi_Sj and psqi_10e, and the freehand explanations should
have any type of suffix after this to indicate a text answers (i.e. psqi_Sj_Desc or psqi_5j_string,
psqi_5j_freehand). As an example, LCBC has the following set-up:

* psqi_1

* psqi_2

* psqi_3

* psqi_4

* psqi_5a psqi_Sb psqi_5c psqi_5d psqi_5Se psqi_5f psqi_Sg psqi_5h psqi_5i psqi_5j psqi_5j_Coded

psqi_Sj_Desc

* psqi_6

* psqi_7

* psqi_8

* psqi_9

¢ psqi_10 psqi_10a psqi_10b psqi_10c psqi_10d psqi_10e psqi_10e_Desc psqi_10e_Coded

* psqi_11a psqi_11b psqi_11c psqi_11d
4-option questions coding:
All 4-option questions need to be coded 0-3, not 1-4.

44 psqi_compute_comp2

Time formats:
For question 1, 3 and 4 (bedtime, rising time, hours of sleep), data should be punched as
"HH:MM". Question 2 should be punched as minutes in numbers.

References:

Buysse et al. (1989) The Pittsburgh sleep quality index: A new instrument for psychiatric practice
and research, Psychiatry Research, 28:2, 193-213

Usage

psqgi_compute_comp2(min_before_sleep, no_sleep_30min)
psqi_compute_comp3(hours_sleep)

psqi_compute_comp4(hours_sleep, bedtime, risingtime, ...)
psqi_compute_comp5(data, sleep_troubles = matches("*psqi_05[b-jI1$"))
psqi_compute_comp7 (keep_awake, keep_enthused)

psqi_compute_global(data, cols = matches("comp[1-7]+_"), max_missing = 0)

psqi_compute(
data,
components = 1:7,
bedtime = psqi_01,
min_before_sleep = psqi_02,
risingtime = psqi_03,
hours_sleep = psqi_04,
no_sleep_30min = psqi_05a,
sleepquality = psqi_06,
medication = psqi_07,
keep_awake = psqi_08,
keep_enthused = psqi_09,
sleep_troubles = matches("*psqi_05[b-3j1%$"),
max_missing = 0,

L
n

prefix = "psqi_",
keep_all = TRUE

Arguments

min_before_sleep
column name with no. minutes before sleep (numeric) (psqi_02)

no_sleep_3@0min column name with evaluation of sleep within 30min (0-3) (psqi_05a)
hours_sleep column name with hours of sleep (decimal hours) (psqi_04)

bedtime column name with bedtime (HH:MM:SS) (psqi_01)

https://www.sciencedirect.com/science/article/pii/0165178189900474
https://www.sciencedirect.com/science/article/pii/0165178189900474

psqi_compute_time_in_bed 45

risingtime

data
sleep_troubles
keep_awake
keep_enthused
cols

max_missing

components
sleepquality
medication
prefix

keep_all

Value

column name with rising time (HH:MM:SS) (psqi_03)

other arguments to psqi_compute_time_in_bed

data frame

columns containing sleep problem evaluations (0-3) (psqi_05(b-j))
column name with evaluation of staying awake (0-3) (psqi_08)
column name with evaluation of keeping enthusiastic (0-3) (psqi_09)
columns containing the components

Integer specifying the number of missing values to accept in the PSQI com-
ponents, before the global PSQI value is set to missing. Defaults to 0. If
max_missing > @, the global PSQI value is computed by weighting each non-
missing entry with 7 / (7 - max_missing).

integer vector of components to calculate. If all 7, global is added also
column name with evaluation of sleep quality (0-3) (psqi_06)

column name with use of sleep mediation (0-3) (psqi_07)

string to prefix column names of computed values

logical, append to data.frame

a data.frame containing only the calculated components

Functions

* psqi_compute_comp2(): calculate the component 2 (sleep latency)

* psqi_compute_comp3(): calculate the component 3 (sleep duratione)

* psqi_compute_comp4(): calculate the component 4 (habitual sleep efficiency)

* psqi_compute_comp5(): calculate the component 5 (sleep disturbance)

* psqgi_compute_comp7(): calculate the component 7 (daytime dysfunction)

* psqi_compute_global(): calculate the global scores, sum of all components

psqi_compute_time_in_bed

PSQI compute time in bed

Description

PSQI compute time in bed

46 tas_compute

Usage

psqi_compute_time_in_bed(
risingtime,
bedtime,
risingtime_func = lubridate::hm,
bedtime_func = lubridate::hm

)

Arguments
risingtime column name with rising time (HH:MM:SS) (psqi_03)
bedtime column name with bedtime (HH:MM:SS) (psqi_01)

risingtime_func
function to convert time to Period

bedtime_func function to convert time to Period

tas_compute Compute the TAS factors

Description

Compute the TAS factors

Usage

tas_compute(
data,
reverse_cols = c(tas_04, tas_05, tas_10, tas_18),
identify_cols = c(tas_01, tas_03, tas_06, tas_07, tas_09, tas_13, tas_14),
describe_cols = c(tas_02, tas_04, tas_11, tas_12, tas_17),
thinking_cols = c(tas_05, tas_08, tas_10, tas_15, tas_16, tas_18, tas_19, tas_20),

prefix = "tas_",
keep_all = TRUE
)
Arguments
data Data containing TAS data

reverse_cols Columns that need reversing

identify_cols Columns for the "identify feeling" factor
describe_cols Columns for the "describing feelings" factor
thinking_cols Columns for the "externally oriented thinking" factor
prefix string to prefix column names of computed values

keep_all logical, append to data.frame

time_alter 47

time_alter Turn strings of H:M to time

Description

Turn strings of H:M to time

Usage

time_alter(x, unit = "minute”, time_func = lubridate::hm)
Arguments

X string of class lubridate::hms "HH:MM:SS"

unit unit to convert to

time_func a function to convert X to a lubridate time vector. Default is lubridate::hms
Examples

time <- c("02:33")
time_alter(time)
time_alter(time, "minute”)

time_deci2period Turn time into period

Description

Turn strings in class hms into periods of time.

Usage

time_deci2period(x, unit = "hour"”, type = "hm")

Arguments

X string of class lubridate::hms "HH:MM:SS"
unit unit to convert to
type hms or hm

Value

Period

Examples

time_deci2period(8.5)
time_deci2period(1.25, "minute"”)

48 time_hms2deci

time_factor Factor time of day

Description

Takes a vector of HH:MM (HH:MM:SS) information and categorizes these by a 4 level factor of
time of day.

Usage

time_factor(x, time_func = lubridate::hms, tod = time_of_day())

Arguments
X character vector of times
time_func a function to convert x to a lubridate time vector. Default is lubridate::hms
tod list defining when the breakpoints for the various time of day distinctions.
Value

factor vector

Examples

time_factor(c(”12:23", "15:59", "22:10", "8:13"))

time_hms2deci Turn string time into decimal

Description

Turn string time into decimal

Usage
time_hms2deci(x, unit = "hour")

Arguments
X string of class lubridate::hms "HH:MM:SS"
unit unit to convert to

Value

numeric vector

time_of _day 49

Examples

time <- lubridate::hms("02:33:12")
time_hms2deci(time)
time_hms2deci(time, "minute")

time_of_day Create list of time of day break points

Description

Create list of time of day break points

Usage
time_of_day(morning = c(5, 12), afternoon = c(12, 17), evening = c(17, 21))

Arguments
morning vector of two for the hours where morning start or end in 24H
afternoon vector of two for the hours where afternoon start or end in 24H
evening vector of two for the hours where evening start or end in 24H
Value

list of fours times of day classifying the 24H of the day

Examples

time_of_day()

zygo_calc Zygocity - Calculate item
Description

Classification:
This note contains a brief description of the algorithm used to determine zygocity in recruitment
in the 2000s.

Name Answer questions about... Used for

Drop You and your twin were like two drops of water in childhood Pairs and singles

Stranger Strangers had trouble telling the difference when you were children Pairs and singles

Eye Similarity in terms of eye color Pairs

Voice Similarity in terms of voice Single

50 zygo_calc

Dexter Similarity in Dexterity Pairs and Singles
Belief What you believe yourself Pairs and Singles

"Single" twins here means those who have responded alone, i.e. there is no data available for both
in the pair. The similarity questions that are not found in the table above, e.g. whether or not
family members had problems distinguishing the twins is not used in the classification.

Weights:

During calculations of the entire zygocity score, weights are applied to the different categories,
depending on whether one or both twins have responded to the questionnaire.

Name Answer questions about... Factor single Factor pair
Drop You and your twin were like two drops of water 1.494 2.111
Stranger Strangers had trouble seeing the difference 0.647 0.691
Eye Similarity in terms of eye color 0.394

Voice Similarity in terms of voice 0.347
Dexter Dexterity Similarity 0.458 0.366
Belief What you believe yourself 0.417 0.481
Constant term in the formula 0.007 - 0.087

Usage

zygo_calc(x, type, n = "single"”, recode = TRUE)

Arguments
X integer vector of answers to one of the questionnaire questions. Should not be
longer than 2.
type type of question the vector is from. "drop", "stranger, "dexterity", "voice", "eye",
or "belief".
n string indicating number of twins in the pair available. Either "single" or "pair".
recode logical indicating if data should be recoded from 1-5(7) to -1. 0. 1.
Value

single value of calculated score based on recoded vector and multiplied with correct factor weight.

Examples

zygo_calc(c(1), type = "eye")
zygo_calc(c(1,3), type = "belief", n = "pair")
zygo_calc(c(4), type = "voice")

zygo_compute 51

zygo_compute Compute weighted zygocity

Description

The Zygocity questionnaire was developed by the Norwegian Public Health Institute (FHI; Folke-
helseinstituttet) for their twin registry studies. Its a series of questions probing the similarities
between twins, to determine if they are mono- or dizygotic.

Usage

zygo_compute(
data,
twin_col,
cols,
recode = TRUE,
prefix = "zygo_",
keep_all = FALSE

)
Arguments
data dara.frame with the relevant data
twin_col column that codes for twin pairs. Each twin should have the same identifier
here.
cols columns that contain the zygocity data. Use tidy-selectors
recode logical indicating if data should be recoded from 1-5(7) to -1. 0. 1.
prefix string to prefix column names of computed values
keep_all logical, append to data.frame
Details
Classification:
This note contains a brief description of the algorithm used to determine zygocity in recruitment
in the 2000s.
Name Answer questions about... Used for
Drop You and your twin were like two drops of water in childhood Pairs and singles
Stranger Strangers had trouble telling the difference when you were children Pairs and singles
Eye Similarity in terms of eye color Pairs
Voice Similarity in terms of voice Single
Dexter Similarity in Dexterity Pairs and Singles

Belief What you believe yourself Pairs and Singles

zygo_compute

"Single" twins here means those who have responded alone, i.e. there is no data available for both
in the pair. The similarity questions that are not found in the table above, e.g. whether or not
family members had problems distinguishing the twins is not used in the classification.

Weights:
During calculations of the entire zygocity score, weights are applied to the different categories,
depending on whether one or both twins have responded to the questionnaire.

Name Answer questions about... Factor single Factor pair
Drop You and your twin were like two drops of water 1.494 2.111
Stranger Strangers had trouble seeing the difference 0.647 0.691
Eye Similarity in terms of eye color 0.394
Voice Similarity in terms of voice 0.347
Dexter Dexterity Similarity 0.458 0.366
Belief What you believe yourself 0.417 0.481

Constant term in the formula 0.007 - 0.087

Coding:

"Form value" is the value the answer option has in the data file. "Score value" is the value used in
the algorithm when zygocity is calculated.

Variable Answer option Form value Score value
Drop Like two drops of water 1 1
Like most siblings 2 -1
Don’t know 3 0
Stranger Often 1 1
Occasionally 2 0
Never 3 -1
Don’t know 4 0
Belief Monozygotic 1 1
Dizygotic 2 -1
Don’t know 3 0
Eye, Voice & Dexter Exactly the same 1 1
Almost like 2 0
Different 3 -1
Don’t know 4 0

No answer option is used directly in the calculations, only the score values. In the following, it is
these values (-1, O or 1) that are used in the algorithms. E.g. has Drop in the formula value 1 for
a positive answer to whether the twins were equal to two drops of water.

The higher the absolute value of the final score, the more certain / clearer the classification. For
answers that reveal greater uncertainty about the similarity (e.g. a greater proportion of "almost"
and "don’t know"), the value will be closer to zero.

Pair formula:

For pairs where both have answered, the pair’s average values for all score values are first calcu-
lated. That is Drop = (Dropl + Drop2) / 2, etc., where Dropl is the score value of the response
from twin 1 and Drop2 is the score value of the response from twin 2 in the same pair.

zygo_recode 53

The sign of this "pair score" is then used to determine zygocity in the same way as for "single":
Negative value means double, positive value means single.

Single formula:
If only one twin in the pair has responded, the following is calculated:

The sign of this "single score" is then used to determine the zygocity: Negative value means
double egg, positive value means single egg.

Column names:

By default, the functions assume that columns have names in the manner of zygocity_XX where
XX is a zero-padded (i.e. zero in front of numbers below 9, eg. @9) question number of the in-
ventory. You may have column names in another format, but in that case you will need to supply
to the functions the names of those columns using tidy-selectors (see the tidyverse packages for
this). The columns should adhere to some naming logic that is easy to specify.

Data values:
The values in the columns should be the item number of the question that was answered (i.e. 1,
2, or 3, and for some questions also 4).

Value

data.frame with computed values

zygo_recode Zygocity - recode variables

Description

Coding:
"Form value" is the value the answer option has in the data file. "Score value" is the value used in
the algorithm when zygocity is calculated.

Variable Answer option Form value Score value
Drop Like two drops of water 1 1
Like most siblings 2 -1
Don’t know 3 0
Stranger Often 1 1
Occasionally 2 0
Never 3 -1
Don’t know 4 0
Belief Monozygotic 1 1
Dizygotic 2 -1
Don’t know 3 0
Eye, Voice & Dexter Exactly the same 1 1
Almost like 2 0
Different 3 -1
Don’t know 4 0

https://www.tidyverse.org/

54 zygo_type

No answer option is used directly in the calculations, only the score values. In the following, it is
these values (-1, O or 1) that are used in the algorithms. E.g. has Drop in the formula value 1 for
a positive answer to whether the twins were equal to two drops of water.

Usage

zygo_recode(x, type)

Arguments
X vector of numbers, either 1:3 or 1:4
type Type of question to recode. Can either be 05, 06, 07 or 08, or drop, stranger,
dexterity, voice, eye or belief.
Value

return a vector with 0, -1 or 1.

Examples

zygo_recode(c(1:4, NA), type = "eye")
zygo_recode(c(1:4, NA), type = "voice")
zygo_recode(c(1:3, NA), type = "drop")

zygo_type Find how many twins have answered

Description

The zygocity calculations are different depending on wheather both twins have answered the ques-
tionnaire or not. This convenience function help determine, based on the column coding for twin
pairs, if one or two twins are present in the data with complete viable data. If both twins are in the
data, but one twin has incomplete data, the function will return "single" for the remaining twin.

Usage

zygo_type(data, twin_col, cols = starts_with("zygo"))

Arguments
data dara.frame with the relevant data
twin_col column that codes for twin pairs. Each twin should have the same identifier
here.
cols columns that contain the zygocity data. Use tidy-selectors
Value

full data frame with twin type appended

zygo_weighted 55

zygo_weighted Calculate weighted zygocity item

Description
Calculate the item score of a question. Function takes a single vector, with information on the
question type and the twin type (’single’ or ’pair’) and calculates the zygocity item score.

Usage

zygo_weighted(x, type, n = "single")

Arguments
X vector or recoded zygocity data (-1, 0, 1)
type string. one of ’drop’, ’stranger’, *dexterity’, "voice’, ’eye’ or "belief.
n string, ’pair’ if both twins have answered, ’single’ if not.

Value

numeric vector of weighted data

Index

* edu_functions
edu_compile, 14
edu_compute, 15
edu_factorise, 16
edu_levels, 17
edu_levels2name, 18
edu_reduce, 20
edu_to_years, 21

x ehi_functions
ehi_compute, 23
ehi_compute_1lq, 25
ehi_factorise_lq, 28
ehi_factorise_nominal, 31

* gds_functions
gds_alter_values, 32
gds_binary, 32
gds_compute_sum, 33
gds_values, 35

* ipaq_functions
ipag_compute_met, 37
ipag_mets, 40
ipag_time_alter, 41

* psqi_functions
psqi_compute_comp2, 43

bdi_compute, 2

bdi_compute_sum, 4

bdi_compute_sum (bdi_compute), 2
bdi_factorise (bdi_compute), 2
bdi_restructure, 5

bfi, 6

bfi_compute (bfi), 6
bfi_compute_domains (bfi), 6
bfi_compute_facets (bfi), 6
bfi_domain, 8

bfi_domain_agreeable (bfi_domain), 8
bfi_domain_conscient (bfi_domain), 8
bfi_domain_extravers (bfi_domain), 8
bfi_domain_negemotion (bfi_domain), 8
bfi_domain_openminded (bfi_domain), 8

bfi_facet, 10

bfi_facet_aestheticsens (bfi_facet), 10
bfi_facet_anxiety (bfi_facet), 10
bfi_facet_assertive (bfi_facet), 10
bfi_facet_compassion (bfi_facet), 10
bfi_facet_depression (bfi_facet), 10
bfi_facet_emovolatility (bfi_facet), 10
bfi_facet_energy (bfi_facet), 10
bfi_facet_imagination (bfi_facet), 10
bfi_facet_intcuriosity (bfi_facet), 10
bfi_facet_organization (bfi_facet), 10
bfi_facet_productive (bfi_facet), 10
bfi_facet_respectful (bfi_facet), 10
bfi_facet_responsibility (bfi_facet), 10
bfi_facet_sociability (bfi_facet), 10
bfi_facet_trust (bfi_facet), 10
bfi_reversal, 9, 12,13

edu4_factorise (edu_factorise), 16
edu4_levels (edu_levels), 17
edu4_levels2name (edu_levels2name), 18
edu4_to_years (edu_to_years), 21
edu9_factorise (edu_factorise), 16
edu9_levels (edu_levels), 17
edu9_levels2name (edu_levels2name), 18
edu9_reduce (edu_reduce), 20
edu9_to_years (edu_to_years), 21
edu_compile, 14, 16-19, 21, 22
edu_compute, 14, 15, 17-19, 21, 22
edu_factorise, 14, 16, 16, 18, 19, 21, 22
edu_levels, 14,16, 17,17, 19, 21, 22
edu_levels2name, /4, 16-18, 18, 21, 22
edu_map, 19

edu_map_chr (edu_map), 19
edu_map_num (edu_map), 19
edu_recode, 20
edu_reduce, 14, 16-19, 20, 22
edu_to_years, 14, 16-19, 21, 21
ehi_change, 22
ehi_compute, 23, 28, 30, 31

INDEX

ehi_compute_lq, 25, 25, 28, 30, 31
ehi_factorise_lq, 25, 28, 28, 31
ehi_factorise_lqga (ehi_factorise_1q), 28
ehi_factorise_nominal, 25, 28, 30, 31
ehi_values, 31

gds_alter_values, 32, 33, 35, 36
gds_binary, 32, 32, 35, 36
gds_compute (gds_compute_sum), 33
gds_compute_sum, 32, 33, 33, 36
gds_factorise (gds_compute_sum), 33
gds_values, 32, 33, 35, 35

income_bin2nok, 36
income_nok2other, 37

ipag_compute (ipag_compute_met), 37
ipag_compute_met, 37, 40, 41
ipag_compute_sum (ipag_compute_met), 37
ipag_mets, 39, 40, 41
ipag_time_alter, 39, 40, 41

is_hm, 41

is_hms, 42

psqgi_compute (psqi_compute_comp2), 43
psqgi_compute_comp2, 43
psqi_compute_comp3
(psqgi_compute_comp2), 43
psqgi_compute_comp4
(psqi_compute_comp2), 43
psqi_compute_comp5
(psqi_compute_comp2), 43
psqi_compute_comp7
(psqgi_compute_comp2), 43
psqi_compute_global
(psqi_compute_comp2), 43
psqi_compute_time_in_bed, 45, 45

tas_compute, 46
time_alter, 47
time_deci2period, 47
time_factor, 48
time_hms2deci, 48
time_of_day, 49

zygo_calc, 49
zygo_compute, 51
zygo_recode, 53
zygo_type, 54
zygo_weighted, 55

	bdi_compute
	bdi_restructure
	bfi
	bfi_domain
	bfi_facet
	bfi_reversal
	edu_compile
	edu_compute
	edu_factorise
	edu_levels
	edu_levels2name
	edu_map
	edu_recode
	edu_reduce
	edu_to_years
	ehi_change
	ehi_compute
	ehi_compute_lq
	ehi_factorise_lq
	ehi_factorise_nominal
	ehi_values
	gds_alter_values
	gds_binary
	gds_compute_sum
	gds_values
	income_bin2nok
	income_nok2other
	ipaq_compute_met
	ipaq_mets
	ipaq_time_alter
	is_hm
	is_hms
	psqi_compute_comp2
	psqi_compute_time_in_bed
	tas_compute
	time_alter
	time_deci2period
	time_factor
	time_hms2deci
	time_of_day
	zygo_calc
	zygo_compute
	zygo_recode
	zygo_type
	zygo_weighted
	Index

